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Desorption transition at charged interfaces: Theoretical approach and experimental evidence
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A field theory is used to describe an ionic solution in contact with a charged and adsorbing wall. The
Hamiltonian, a functional of the ionic density fields, contains the entropy, the electrostatic energy, a nonlocal
Van der Waals type contribution preventing sharp density variations, and an adsorption potential. The mean-
field equations are solved numerically. However, they can be recasted so as to put in evidence a one parameter
Lie group structure, which is a generalization of the charge-translation symmetry present in the Gouy-Chapman
theory. There is a region in the charge-adsorption parameter space where this symmetry is broken, which
corresponds to a desorption transition for the ionic species. The properties of this transition are investigated.
Finally, this desorption phenomenon provides a simple explanation for a general feature in the properties of
metal-electrolyte interfaces: the branching pattern observed in the experimental capacitance curves for a series
of electrolytes. The part of the capacitance curves which is independent of the nature of the ions is related to
the absence of interaction of the ionic species with the wall once the desorption takes place.

PACS number~s!: 61.20.Qg, 73.30.1y, 68.35.Rh
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I. INTRODUCTION

The long range of the Coulombic potential is at the orig
of very special behaviors such as the nonanalytic depend
of thermodynamic functions on ionic concentration or t
existence of constraints on the correlation functions desc
ing the structure of conducting phases. Due to this, Coulo
bic systems such as plasma, fused salts, electrolyte solut
and charged colloidal systems have attracted attention
many theoreticians and experimentalists. In this paper we
interested in the theoretical description of a quite gene
experimental fact found at the metal-ionic solution interfa
However, we believe that what is observed at this particu
interface, may reveal some general behaviors for la
classes of charged interfacial systems.

For a wide domain of applied potential the mercur
electrolyte interface may be considered as a pure capac
Then, for a given thermodynamic equilibrium, we can inve
tigate the properties of the interface when changing, for
stance, the nature of the solvent, the nature, and the con
tration of the electrolyte or the charge of the electrode.
some solvents, we observe a range of potential where
capacitance is independent of the nature of the ions. A s
matic representation of this behavior is given in Fig. 1. T
kind of behavior is clearly visible for 0.1 M electrolytes i
N-methylformamide@1# and formamide@2# but also distin-
guishable in N-methylacetamide @3#, methanol @4#,
N,N-dimethylformamide@5#, and dimethylsulphoxide@6#.
The curves form a branching pattern in which there is a b
curve from which branches are formed. From a mathemat
view point this pattern implies nonanalyticity at the branc
ing points.

To explain this behavior it is assumed that no ion is
contact with the electrode in this range of potential. In wh
follows, we first elaborate a model which predicts the ex
tence of an ionic desorption transition when changing
PRE 611063-651X/2000/61~4!/3877~7!/$15.00
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electrical state of the interface. This is the first goal of th
paper. After that we extend this model in order to investig
the experimental data observed at the mercury-solution in
face. This is the second goal of this paper.

As we shall see, the differential equations describing
model have a special structure. We can thus generalize
property of the nonlinear Gouy-Chapman theory~NLGCT!.
In this theory there is only one generic profile for each qu
tity characterizing the interface~electric field, ionic densities
etc.!. The profiles for a given charge on the surface is o
tained by translating the origin of the coordinate system

FIG. 1. Schematic representation of double layer capacitanc
one of the typical solvents quoted in the text@3–6#. The branches
correspond to different electrolytes.
3877 © 2000 The American Physical Society
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3878 PRE 61J. STAFIEJ, D. di CAPRIO, AND J. P. BADIALI
the generic profiles. The third goal of this paper is to anal
and extend this charge-position symmetry. We will see t
such a symmetry can be related to the existence of a
dimensional Lie group.

This paper is organized as follows. In Sec. II we descr
the main ingredients of our theoretical approach. In Sec
we find the differential equations describing the interface
the mean-field approximation~MFA! and we perform a
group analysis of these equations. In Sec. IV we describe
desorption transition. Sections II–IV describe a gene
model and its predictions for ionic solutions in contact with
charged hard wall. In Sec. V we discuss how to relate
model with the experimental data observed at the merc
electrolyte interface. Finally in Sec. VI we present some c
cluding remarks.

II. THEORETICAL APPROACH

We describe the properties of an ionic solution in cont
with a charged hard wall using a field theoretic approa
already described in Ref.@7#. Since we focus on a phenom
enon which depends explicitly on the ions we describe
system with the ionic density distributions only and we
duce the solvent to a dielectric continuum. The interfac
properties are determined by the Hamiltoni
H@r1(r ),r2(r )# which is a functional of two fieldsr1(r )
andr2(r ), representing the distributions of cations and a
ions, respectively. We use forH@r1(r ),r2(r )# the form in-
vestigated in Refs.@8–10#. For bulk ionic solutions with
H@r1(r ),r2(r )# truncated to a bilinear form in terms of th
fields, the functional integration leads to the exact Deb
limiting law but also to more general results@10,11#. For
charged interfaces, ifH@r1(r ),r2(r )# is reduced to the sum
of the ideal entropy and the coulombic part, the NLGCT
recovered in the MFA@8#.

We consider a planar interface.Oz is the direction normal
to the interface. We introduce a dividing surface located
z50 where we assume the existence of a hard wall. In w
follows we investigate the regionz>0. In the other half
spacez,0 we can have a bulk phase or the existence
another interface but till Sec. V the explicit properties of th
region are not needed.

In order to describe the regionz.0 we, first consider the
same HamiltonianH bulk5H Coul1H ideal as for the bulk
phase@10#. The Coulombic energy functionalH Coul corre-
sponds to

bH Coul@q~r !#5
KD

2

8prb
E

z>0

q~r !q~r 8!

ur2r 8u
drdr 8, ~1!

where « is the dielectric constant of the pure solvent,rb
52r and r is the electrolyte concentration,KD
5(rbe2b/«)1/2 the inverse Debye length,b5(kBT)21 is the
inverse temperature ande is the elementary charge. We co
sider a 121 electrolyte and define the charge density
q(r )5r1(r )2r2(r ). The ideal entropy functionalH ideal is
given by
e
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bH ideal@r1~r !,r2~r !#5E
z>0

H r1~r !F ln
r1~r !

r ref
21G1r2~r !

3F ln
r2~r !

r ref
21G J dr , ~2!

wherer ref is an arbitrary reference density@10#.
In order to avoid the large ionic density variations pr

dicted by the NLGCT at the wall we introduce a nonloc
Hamiltonian defined according to

bH nonloc@r1~r !,r2~r !#5
1

2 (
i , j 51,2

E
z>0

b̃i j @¹r i~r !#

3@¹r j~r !#dr . ~3!

Since at a charged hard wallH bulk leads to the NLGCT, at
the same level of description we can assume thatb̃i j coeffi-
cients do not contain ion specificity and then we haveb̃11

5b̃225b̃125b̃. This kind of term appears in the Van de
Waals theory@12# and is commonly used in the Landau
Ginzburg Hamiltonian@13#. With this term each slice of the
interface is correlated to its neigbhors.

In order to introduce a coupling between the two sides
the interface we assume the existence of two external fi
located at the dividing surfacez50. To compensate the
charge distribution on the solution side we introduce a s
face chargees̃0d(z), wheres̃0 is the surface charge densit
on the wall. In order to work with an overall neutral syste
we redefineH Coul with q(r )5s̃0d(z)1r1(r )2r2(r ). In
addition, we consider a second external field which int
duces a non-Coulombic coupling between the two sides
the interface. We assume that this potential has a very s
range compared to the variation range of the ionic distri
tion and we represent its variation in space by a delta fu
tion localized inz50. This leads to the following contribu
tion H surf to the Hamiltonian

bH surf@r1~r !,r2~r !#5E
z>0

h̃0@r1~r !1r2~r !#d~z!dr .

~4!

If h̃0 is positive~negative! anions and cations are repelle
~attracted! from ~to! the wall. In what follows we investigate
the total Hamiltonian defined byH5H bulk1H nonloc1H surf.

III. MEAN FIELD EQUATIONS AND LIE GROUP
DESCRIPTION

Instead of performing the functional integration we co
sider the MFA treatment ofH. It yields an integrodifferential
system of equations for the ionic profiles@9#. To deal with
these equations which have no analytic solution we can
any numerical method and discuss the solution for a gi
set of parameters. However, to have a better understan
of the physics behind these equations, it is possible to tra
form them in a form from which we can learn somethin
about the system without having to solve them explicit
Hereafter we follow this route. To find a useful transform
tion of the initial equations we take advantage of a ve
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PRE 61 3879DESORPTION TRANSITION AT CHARGED . . .
specific property of the NLGCT which corresponds to a s
cial case of our Hamiltonian. For the NLGCT each inter
cial property is described by a unique profile. Changing
charge on the wall is equivalent to translating the origin
coordinates. In order to analyze and to extend this cha
position symmetry it is very tempting to perform a grou
analysis of our equations. In what follows we transform t
MFA equations into a system of differential equations wh
the existence of the Lie group is manifest.

Taking advantage of the symmetries of the Hamilton
due to the existence of a common value of the parametb
and using the Poisson equation the integrodifferential sys
is transformed into two second order ordinary different
equations and then into four first order equations. In orde
give a simple form to the equations we introduce the dim
sionless quantities ẑ5KDz, g6( ẑ)52r6(z)/rb , b2

5rbKD
2 b̃, h052KDh̃0 , v( ẑ)52beV( ẑ), and s0

5(2be/«KD)s̃05(2be/KD)E0, whereV( ẑ) is the electric
potential andE0 is the electric field at the wall. Since n
confusion is possible later we omit the hat on the reducez

variable. The interfacial free energyf̃ is calculated in re-
duced units according tof 5(4KDb/rb) f̃ . We define addi-
tional variables

s~z!52
dv~z!

dz
, ~5!

h~z!5b2
d

dz
@g1~z!1g2~z!#, ~6!

wheres(z) is the electric field expressed in the dimensio
less form andh(z) is the rescaled gradient of ionic densit
Then the system of four first order differential equations
written as follows:

d

dz
g15

sg1g21
h

b2
g1

g11g2
, ~7!

d

dz
g25

2sg1g21
h

b2
g2

g11g2
, ~8!

d

dz
s5g12g2 , ~9!

d

dz
h5 ln~g1g2!. ~10!

There are four boundary conditions. Atz50 we have one
boundary condition related to electrostatics

s~z!Uz5052
dv~z!

dz U
z50

5s0 . ~11!

The second boundary condition is set byH surf:
-
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h~z!U
z50

5b2
d

dz
@g1~z!1g2~z!#U

z50

5h0 . ~12!

The two other boundary conditions state that we recover
bulk whenz→`:

g1~z!→1 andg2~z!→1. ~13!

The above conditions imply thats→0 and h→0 when z
→`.

The right hand sides of Eqs.~7!–~10! are differentiable
functions ofs, h, g1 , andg2 , for g1.0 andg2.0 and
do not containz explicitly. This implies the existence of a
four-variable one-parameter Lie group@14# which transforms
the initial values, forz50: s0 , h0 , g01 , g02 into the solu-
tion of Eqs. ~7!—~10! at the pointz: s(z), h(z), g1(z),
g2(z).

If we change the wall parameters and contact values
the profiles according to the above transformation taking
values given for a new positionz8, we can see that this
transformation amounts to a shift in space. The contact
ues are now given by s085s(z8), h085h(z8), g018
5g1(z8),andg028 5g2(z8). The profiles @s8(z), h8(z),
g18 (z), g28 (z)] for the wall with the new contact values ar
simply related to the old ones by

s8~z!5s~z1z8!, h8~z!5h~z1z8!,

g18 ~z!5g1~z1z8!, andg28 ~z!5g2~z1z8!. ~14!

All the points@s(z), h(z), g1(z), g2(z)] transformed from
one initial point define a trajectory in the four-dimension
space.

A four-variable one-parameter Lie group has three inva
ants@14#. We have found these invariants explicitly when a
Eqs. ~7!–~10! are linearized around their bulk values. Th
values of only two invariants,c1 and c2, are fixed by the
bulk properties of the ionic solution. Usingc1 andc2 we can
expressg1 andg2 in terms ofs andh. The third invariant,
c3, establishes a relation betweens andh and selects a tra
jectory in the (s, h) plane. In general only one of the tw
first invariants is found explicitly:

c@g1~z!,g2~z!,s~z!,h~z!#

5@22 ln g1~z!g2~z!#@g1~z!1g2~z!#1
h2~z!

2b2

2
s2~z!

2
5p, ~15!

wherep is the bulk pressure in reduced units. The last eq
tion yields the pressure as a function of interfacial proper
at any pointz across the interface. In particular, at the wall,
resembles the so called contact theorem for charged part
near a charged hard wall@15#. It recovers the form of the
contact theorem in the NLGCT (b50 andh050).
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IV. DESORPTION TRANSITION

Using the numerical method described in our previo
papers@8,9# we can solve the system of differential equatio
for a given boundary condition. We find it useful to prese
the results first in the form of trajectories in the (s,h) plane.

The trajectories form a pattern symmetric with respec
thes50 axis reflecting the symmetry between ions~see Fig.
2!. They do not intercept with each other as expected fr
the Lie group analysis but they diverge from the origin a
terminate on a smooth curve in the upper halfplane. In Fig
we present the set of trajectories in the (g1 ,g2) plane cor-

FIG. 2. Trajectories in the (s,h) plane obtained by a numerica
solution of Eqs.~7!–~10!. b51 in reduced units which correspond
to the Debye length in a given electrolyte.

FIG. 3. Trajectories in the (g1 ,g2) plane corresponding to
those in Fig. 2.
s

t

o

3

responding to those in Fig. 2. The pattern of lines is symm
ric with respect to theg15g2 axis because of the symmetr
between ions and shows the existence of two focal poi
All the trajectories diverge from the point corresponding
the bulk (g151, g251) and converge towards the poin
(g150, g250) corresponding to a desorption of the io
and also to the terminal curve in the (s,h) plane. The right
hand sides of Eqs.~7!, ~8!, and ~10! diverge wheng1→0
and g2→0. For g150 andg250 we lose the Lie group
condition for the equations. The invariant~15! taken in this
limit yields

h2

2b2
5p1

s2

2
. ~16!

The limiting curve in the (s,h) plane corresponds to th
upper branch of the above hyperbola. The physical mean
of this result is the following. When the ionic densities va
ish the pressure in the fluid is equal to@¹(g11g2)#2. The
value of this quantity is fixed, at the wall, by the desorbi
potentialh. Hence we see that the repulsion from the w
driven byh has to counterbalance both the electrostatic a
bulk pressure which both have a tendency to bring ions cl
to the wall.

In contrast to the NLGCT, there is a continuous set
trajectories. Each of them corresponds, for each of the in
facial properties, to a different profile. Since every trajecto
arrives at the limiting hyperbola at a point uniquely dete
mined by its charge density it is convenient to parametr
the trajectories with this charge densitys limit . The existence
of this limiting point constitutes another difference with th
NLGCT. At this point the Lie group symmetry, i.e., th
charge-translation symmetry in the NLGCT, breaks dow
From the Lie group parametrization withz, this point in the
(s,h) parameter space also corresponds to a position in
space. We can take this position as the origin of the coo
nate system—a wall placed in this position is such that th
is a complete desorption of the ions, the characteristic c
tact values are then completely determined bys limit . The
generic profiles for this wall are writteng1* (s limit ;z) and
g2* (s limit ;z) with g6* (s limit ;z50)50. In Fig. 4 we give an
example of such generic profiles for various values of
charge densitys limit . If we take an arbitrary wall character
ized by (s0 ,h0) we have to consider two cases. Ifh0

>bAs0
212p, we are above the limiting curve, then the pr

file is identical to the generic profile fors limit5s0 as we
shall see below. Ifh0,bAs0

212p we have to find the tra-
jectory passing through this point and determine in terms
the Lie group parametrization the distancez0 from the lim-
iting point to this point. Then the profiles are simply obtain
from the generic profiles by a translationg1(z)
5g1* (s limit ,z1z0) andg2(z)5g2* (s limit ,z1z0) for z.0.

In the vicinity of the completely desorbing wall (h0

5bAs0
212p ands05s limit), z'0, from Eqs.~7!–~10! we

can see that the profiles show a nonanalytic dependencez:

S h0

b2
z1z2ln zD . ~17!
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PRE 61 3881DESORPTION TRANSITION AT CHARGED . . .
If z'0 the trajectory in the (s,h) plane is given by a scaling
law of the form

uh2h0u'us2s0u1/2lnus2s0u. ~18!

It is seen that the trajectory approaches the terminal cu
with an infinite slope. Similar scaling relations can be fou
for other pairs of variablesg6}us2s0u1/2 and uh2h0u
}g6ln g6 .

When the wall characterized byh0>bAs0
212p is put in

contact with the solution the effect of the wall is the same
for h05bAs0

212p. The ions are already pushed out of t
range of the repulsive potential and do not feel any furt
increase. Thus all the regionh0>bAs0

212p corresponds to
the conditiong15g250. The natural prolongations of th
trajectories above the limiting curve are vertical liness
5const consistent with the limitdh/ds→` when approach-
ing the terminal curve from below.

The interfacial free energy depends on the wall para
etersf 5 f (s0 ,h0). From Ref.@9# we know:

S ] f

]s D
h0

5v and S ] f

]hD
s0

5g11g2 , ~19!

wherev andg11g2 refer to the electric potential and tota
density contact values, in reduced units, for the wall char
terized by s0 and h0. We can verify that (] f /]h)s0

and
higher order derivatives continuously vanish when approa
ing complete desorption (s0→s limit). However, the free en
ergy is nonanalytic on the terminal curve becau
(] f /]h)s limit

50 for h>bA2p1s limit
2 and (] f /]h)s limit

.0
otherwise. The crossing of the limiting curve can be cons
ered as a kind of phase transition. We have nonanalytic
scaling relations and Lie group symmetry breaking at

FIG. 4. Generic profiles of ions for the values of charge den
at the limiting curves limit50.014, 0.05, and 0.1 C/m2 from lower to
uppermost dotted line for anions and from the upper to lowerm
solid line for cations.
e

s

r

-

c-

h-

e
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e

crossing point. The peculiarity of this transition is that t
free energy is continuously differentiable up to an arbitra
order but nonanalytic at this point.

This desorption transition is an exact consequence of
MFA treatment of our Hamiltonian. However, there are tw
points to consider. First, is MFA sufficient to describe t
above transition and second, is the Hamiltonian sufficien
describe a real system? From the literature it is known t
MFA is generally qualitatively correct as a first approxim
tion to describe a phase transition~the famous exception is
the one-dimensional Ising model! @16#. Concerning the sec
ond point we see from Eq.~17! that the second derivative o
the profiles diverges as lnz at z50. It might suggest that the
square gradient term is not enough to describe this transit
Strictly speaking this is right. However, the region where t
second derivative becomes large is extremely localized n
z50 and the divergence is integrable. If we exclude the i
mediate vicinity ofz50 we are already in the region wher
the two profiles tend to vanish. A more refined Hamiltoni
would change the scaling laws but not the existence of
transition which indeed has a very clear meaning. At a po
(s0 ,h0) above the hyperbola the wall repels ions from
vicinity. If we increase the absolute value ofs0 keepingh0
constant we may expect a critical value ofs0 for which the
electrostatic attraction compensates the repulsion due toh0.
For higher values ofs0, counterions will be forced back in
contact with the wall. This is the simple physics that o
model describes.

V. COMPARISON WITH EXPERIMENTS

In order to compare the predictions of our model w
experimental results observed at the mercury electrol
interface we have to calculate the differential capacitan
Since we assume thath0 is independent ofs0 the capaci-
tance is defined according to

1

C
5S ]v

]s D
h0

, ~20!

where the potential drop across the interfacev and the ca-
pacitanceC are calculated numerically. Ifh0,bA2p we
have a nonvanishing contact value for the density profi
whatevers0. If h0>bA2p then the lineh05const crosses
the hyperbola. In this case we pass from the region below
hyperbola to the region above it when changings0 along the
h05const line. In the upper region the value of the poten
for a given charge density corresponds to the value of
potential at the limiting point on the hyperbola for the sam
charge density and the capacitance is calculated mo
along the limiting hyperbola. The results are given in Fig
for several values ofh0. In our case we associateh0 to the
nature of the electrolyte. Immediately we see that the str
ger repulsion from the wall, i.e., largerh0, corresponds to the
wider region of desorption.

This result is reminiscent of Fig. 1. The main differen
between Fig. 1 and Fig. 5 is that the ‘‘experimental deso
tion’’ takes place in a region shifted with respect to the po
of zero charge. This is not surprising taking into account

y

st
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3882 PRE 61J. STAFIEJ, D. di CAPRIO, AND J. P. BADIALI
crudeness of our model. For mathematical convenience
to show the existence of the desorption transition we
scribe the solution side with only one parameterb. All the
interfacial specificities are represented byh0 so far assumed
independent ofs0. As mentioned in Sec. II next to the wa
we may expect a specific interfacial region. Electrochem
often assume that this region,z,0, is formed by a mono-
layer of solvent molecules covering the mercury. Thenh0
introduced in Eq.~4! represents the coupling between th
monolayer and the remaining part of the solution. This c
pling is short ranged and only the contact values of the io
profiles may have an influence on it. Of course, the value
h0 depends on the structure of the solvent monolayer~num-
ber of solvent molecules, their orientation, etc.! which must
be charge dependent. In other words charging the elect
will affect h0. To describe experiments we have to introdu
an extra relation betweenh0 ands0. When we calculate the
capacitance, we integrate equations along the trajectorie
to a point on thish0(s0) curve. Now the capacitance is give
by

1

C
5

dv
ds

5S ]v
]s D

h0

1S ]v
]hD

s0

dh

ds
. ~21!

On Fig. 6 we have plotted the capacitance for a given cho
of h0(s0) relations. The asymmetry between positive a
negative charge densities observed in the experimental
is now recovered.

Note that the monolayer gives its own contribution to t
experimental capacitance. The resulting capacitance is
pected to depend on the contribution we calculate from

FIG. 5. Capacitance curves calculated from our model us
parameters for 0.1 M solutions inN-methylformamide@1#. In re-
duced unitsb51 andh52, 4, 6, 8, 10, and 12. The capacitan
curve forh52 displays no desorption region. For higher values
h the desorption region gradually increases. The apparent no
ferentiability at the branching point results from numerical inac
racy and the scale of the figure.
nd
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model in a complicated way but as far as the dependenc
continuous it will not change the topological character of t
branching pattern observed.

VI. CONCLUSIONS

In this paper we consider a simple model for an elect
lyte solution in contact with a charged and adsorbing w
The model differs from the NLGCT in the following aspect
First, we take into account a nonlocal interaction which p
vents a too steep variation of the ionic density at the int
face. Second, there is a nonelectrostatic external pote
located at the wallh0. Its effect is to attract or repel ion
from the immediate vicinity of the wall. The perturbatio
induced in the solution side byh0 and the external charg
densitys0 propagates via two modes—electric field and t
gradient of density. With just one parameterb characterizing
the solution side we obtain a sort of phase diagram in
(s,h) plane. The plane is divided into two regions by
limiting curve. In the upper region the contact values of ion
profiles vanish. On the limiting curve the free energy is reg
lar but not analytic. Thus we have found a peculiar ion
desorption transition with nonanalytic behavior of the fr
energy, scaling laws, and symmetry breaking.

This desorption transition leads to a branching pattern
the capacitance curves and can provide a simple explana
for the non-ion-specific feature observed in the experime
curves for a series of electrolytes. However, to describ
real electrode surface we need an extra relationh05h(s0).
It represents a coupling between electrostatic and nonele
static properties of the wall expected in a real interface. Th
the asymmetry of the experimental data can be reprodu
Note that in the usual description of the electrochemical
terface the inner layer and the diffuse layer are coupled o

g

f
if-
-

FIG. 6. Capacitance curves as in Fig. 5 calculated for sev
h0(s0) taken in a linear formh05a1s01a0, wherea150.4 and
a053, 4, 5, and 6. The higher value ofa0 corresponds to the wide
desorption region.
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by the electric field, here a nonelectrostatic coupling betw
the two layers has been introduced. The desorption trans
described in this paper is driven by simple physics and
think it ought to appear in a larger class of charged interfa
than the mercury-electrolyte interface.
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